Computing the Ehrhart quasi-polynomial of a rational simplex
نویسنده
چکیده
We present a polynomial time algorithm to compute any fixed number of the highest coefficients of the Ehrhart quasi-polynomial of a rational simplex. Previously such algorithms were known for integer simplices and for rational polytopes of a fixed dimension. The algorithm is based on the formula relating the kth coefficient of the Ehrhart quasi-polynomial of a rational polytope to volumes of sections of the polytope by affine lattice subspaces parallel to k-dimensional faces of the polytope. We discuss possible extensions and open questions.
منابع مشابه
Intermediate Sums on Polyhedra: Computation and Real Ehrhart Theory
We study intermediate sums, interpolating between integrals and discrete sums, which were introduced by A. Barvinok [Computing the Ehrhart quasi-polynomial of a rational simplex, Math. Comp. 75 (2006), 1449–1466]. For a given semi-rational polytope p and a rational subspace L, we integrate a given polynomial function h over all lattice slices of the polytope p parallel to the subspace L and sum...
متن کاملHighest Coefficients of Weighted Ehrhart Quasi-polynomials for a Rational Polytope
We describe a method for computing the highest degree coefficients of a weighted Ehrhart quasi-polynomial for a rational simple polytope.
متن کاملIntermediate Sums on Polyhedra Ii:bidegree and Poisson Formula
We continue our study of intermediate sums over polyhedra, interpolating between integrals and discrete sums, which were introduced by A. Barvinok [Computing the Ehrhart quasipolynomial of a rational simplex, Math. Comp. 75 (2006), 1449– 1466]. By well-known decompositions, it is sufficient to consider the case of affine cones s+c, where s is an arbitrary real vertex and c is a rational polyhed...
متن کاملar X iv : 1 40 4 . 00 65 v 2 [ m at h . C O ] 3 N ov 2 01 4 INTERMEDIATE SUMS ON POLYHEDRA II : BIDEGREE AND POISSON FORMULA
We continue our study of intermediate sums over polyhedra, interpolating between integrals and discrete sums, which were introduced by A. Barvinok [Computing the Ehrhart quasipolynomial of a rational simplex, Math. Comp. 75 (2006), 1449– 1466]. By well-known decompositions, it is sufficient to consider the case of affine cones s+c, where s is an arbitrary real vertex and c is a rational polyhed...
متن کاملA Finite Calculus Approach to Ehrhart Polynomials
A rational polytope is the convex hull of a finite set of points in Rd with rational coordinates. Given a rational polytope P ⊆ Rd, Ehrhart proved that, for t ∈ Z>0, the function #(tP ∩ Zd) agrees with a quasi-polynomial LP(t), called the Ehrhart quasi-polynomial. The Ehrhart quasi-polynomial can be regarded as a discrete version of the volume of a polytope. We use that analogy to derive a new ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 75 شماره
صفحات -
تاریخ انتشار 2006